Combinatorial Probabilistic Diabetes Diagnosis
In this example, we will build a 1-layer RPN model with combinatorial_normal_expansion
, identity_reconciliation
and linear_remainder
for diagnosing the diabetes disease based on the Pima Indians Diabetes dataset.
We use mps
as the device for the model config file provided below.
Python Code and Model Configurations
rpn with identity reconciliation for mnist classification output
training model...
Epoch: 0, Test Loss: 0.5340700745582581, Test Score: 0.5340701268297842, Time Cost: 0.006468772888183594
Epoch: 100, Test Loss: 0.29197242856025696, Test Score: 0.2919724107636688, Time Cost: 0.0055277347564697266
Epoch: 200, Test Loss: 0.2766035795211792, Test Score: 0.27660356945729825, Time Cost: 0.005342245101928711
Epoch: 300, Test Loss: 0.26146456599235535, Test Score: 0.2614645354786587, Time Cost: 0.005430936813354492
Epoch: 400, Test Loss: 0.24704204499721527, Test Score: 0.24704204207501665, Time Cost: 0.005308866500854492
Epoch: 500, Test Loss: 0.23358845710754395, Test Score: 0.233588461016266, Time Cost: 0.005259990692138672
Epoch: 600, Test Loss: 0.22124238312244415, Test Score: 0.22124238750083064, Time Cost: 0.005246162414550781
Epoch: 700, Test Loss: 0.21007299423217773, Test Score: 0.21007298251503007, Time Cost: 0.0055370330810546875
Epoch: 800, Test Loss: 0.2001015841960907, Test Score: 0.2001015802964822, Time Cost: 0.005261659622192383
Epoch: 900, Test Loss: 0.1913149207830429, Test Score: 0.19131491785419621, Time Cost: 0.0054361820220947266
Epoch: 1000, Test Loss: 0.1836737096309662, Test Score: 0.1836737053254299, Time Cost: 0.005302906036376953
Epoch: 1100, Test Loss: 0.17711907625198364, Test Score: 0.17711907725023052, Time Cost: 0.005380153656005859
Epoch: 1200, Test Loss: 0.17157748341560364, Test Score: 0.1715774714107086, Time Cost: 0.0056056976318359375
Epoch: 1300, Test Loss: 0.16696523129940033, Test Score: 0.16696524386354172, Time Cost: 0.0053501129150390625
Epoch: 1400, Test Loss: 0.16319161653518677, Test Score: 0.16319160136611355, Time Cost: 0.0054242610931396484
Epoch: 1500, Test Loss: 0.16016244888305664, Test Score: 0.16016245362139456, Time Cost: 0.0053369998931884766
Epoch: 1600, Test Loss: 0.15778301656246185, Test Score: 0.15778301431480563, Time Cost: 0.005410194396972656
Epoch: 1700, Test Loss: 0.15595999360084534, Test Score: 0.1559599993896924, Time Cost: 0.005301952362060547
Epoch: 1800, Test Loss: 0.15460419654846191, Test Score: 0.15460419713485304, Time Cost: 0.00522303581237793
Epoch: 1900, Test Loss: 0.15363219380378723, Test Score: 0.153632188729002, Time Cost: 0.005263090133666992
Epoch: 2000, Test Loss: 0.15296749770641327, Test Score: 0.15296750178082663, Time Cost: 0.005364894866943359
Epoch: 2100, Test Loss: 0.15254199504852295, Test Score: 0.15254199940270272, Time Cost: 0.0052661895751953125
Epoch: 2200, Test Loss: 0.15229643881320953, Test Score: 0.15229643199782647, Time Cost: 0.005544900894165039
Epoch: 2300, Test Loss: 0.15218046307563782, Test Score: 0.1521804629655372, Time Cost: 0.005230903625488281
Epoch: 2400, Test Loss: 0.15215271711349487, Test Score: 0.15215270496868652, Time Cost: 0.005433797836303711
Epoch: 2500, Test Loss: 0.15218019485473633, Test Score: 0.15218018954948764, Time Cost: 0.005357980728149414
Epoch: 2600, Test Loss: 0.15223759412765503, Test Score: 0.1522375949802569, Time Cost: 0.005576133728027344
Epoch: 2700, Test Loss: 0.15230637788772583, Test Score: 0.15230638071102204, Time Cost: 0.005346059799194336
Epoch: 2800, Test Loss: 0.15237337350845337, Test Score: 0.15237337481388422, Time Cost: 0.0055010318756103516
Epoch: 2900, Test Loss: 0.15243025124073029, Test Score: 0.15243023843696565, Time Cost: 0.005589008331298828
model checkpoint saving to ./ckpt/diabetes_configs_checkpoint...
evaluating result...
mse 0.15247175085902862
evaluating rounded prediction labels...
accuracy 0.8051948051948052