head
Bases: Module
, function
The RPN head class for implementing the multi-channel module.
It will be used to compose the RPN layer module for building deep RPN models.
...
Notes
Similar to convolutional neural networks (CNNs) employing multiple filters, RPN allows each head to have multiple channels of parameters applied to the same data expansion. RPN defines its multi-channel parameters as \(\mathbf{w}^{0}, \mathbf{w}^{1}, \cdots, \mathbf{w}^{C-1}\), where \(C\) denotes the number of channels. Based on the data expansion, parameter reconciliation and remainder functions, the RPN head will calculate its output with such multi-channel parameters as follows: $$ \begin{equation} g(\mathbf{x} | \mathbf{w}, C) = \sum_{c=0}^{C-1} \left\langle \kappa(\mathbf{x}), \psi(\mathbf{w}^{c}) \right\rangle + \pi(\mathbf{x}), \end{equation} $$ where these multi-channel parameters are fabricated from length \(l\) to shape \((n, D)\) using the identical parameter reconciliation function.
Attributes:
Name | Type | Description |
---|---|---|
m |
int
|
The input dimension of the head. |
n |
int
|
The output dimension of the head. |
l |
(int, optional)
|
The number of parameters for each channel in the head. |
channel_num |
int, default=1
|
The number of channels in the head. |
batch_num |
(int, optional)
|
The batch size used in instance interdependence functions. |
data_transformation |
(object, optional)
|
The data transformation function for the head. |
parameter_fabrication |
(object, optional)
|
The parameter fabrication function for the head. |
remainder |
(object, optional)
|
The remainder function for the head. |
w |
(Parameter, optional)
|
Parameters for parameter reconciliation, with a length of \(l\) per channel. |
b |
(Parameter, optional)
|
Bias parameters for parameter reconciliation. |
w_remainder |
(Parameter, optional)
|
Parameters for the remainder function. |
b_remainder |
(Parameter, optional)
|
Bias parameters for the remainder function. |
device |
str, default='cpu'
|
The device hosting the head. |
Methods:
Name | Description |
---|---|
__init__ |
Initializes the RPN head with multi-channel settings. |
get_m |
Retrieves the input dimension of the head. |
get_n |
Retrieves the output dimension of the head. |
get_channel_num |
Retrieves the number of channels in the head. |
get_batch_num |
Retrieves the batch size used in instance interdependence functions. |
create_learnable_parameters |
Creates learnable parameters for the head. |
initialize_parameters |
Initializes parameters for the head using various strategies. |
initialize_parameters_fanout_std_uniform |
Initializes parameters with a fan-out-based uniform distribution. |
initialize_parameters_kaiming_uniform |
Initializes parameters using the Kaiming uniform distribution. |
initialize_parameters_xavier_uniform |
Initializes parameters using the Xavier uniform distribution. |
initialize_parameters_xavier_normal |
Initializes parameters using the Xavier normal distribution. |
to_config |
Converts the head configuration into a dictionary format. |
calculate_kappa_x |
Computes the transformed data \(\kappa(\mathbf{x})\). |
calculate_phi_w |
Computes the reconciled parameters \(\psi(\mathbf{w})\). |
calculate_pi_x |
Computes the remainder term \(\pi(\mathbf{x})\). |
calculate_attribute_xi_x |
Computes the attribute interdependence \(\xi_{\text{attribute}}(\mathbf{x})\). |
calculate_instance_xi_x |
Computes the instance interdependence \(\xi_{\text{instance}}(\mathbf{x})\). |
calculate_kappa_xi_x |
Computes the combined transformed and interdependent data. |
calculate_inner_product |
Computes the inner product of \(\kappa(\mathbf{x})\) and \(\psi(\mathbf{w})\). |
fusion |
Combines the multi-channel outputs into a single output. |
forward |
Executes the forward pass of the head. |
Source code in tinybig/module/base_head.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 |
|
__init__(m, n, name='rpn_head', batch_num=None, channel_num=1, l=None, l_attribute_interdependence=None, l_instance_interdependence=None, l_channel_fusion=None, input_process_functions=None, data_transformation=None, attribute_interdependence=None, instance_interdependence=None, parameter_fabrication=None, channel_fusion=None, remainder=None, output_process_functions=None, input_process_function_configs=None, data_transformation_configs=None, attribute_interdependence_configs=None, instance_interdependence_configs=None, parameter_fabrication_configs=None, channel_fusion_configs=None, remainder_configs=None, output_process_function_configs=None, create_parameters_at_init=True, parameters_init_method=None, device='cpu', *args, **kwargs)
The initialization method of the RPN-head with multiple channels.
It initializes the RPN head module with multi-channel. Specifically, this method initializes the dimension configurations of the head, the component functions used in the head, and defines the device to host the head.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
m
|
int
|
The input dimension of the head. |
required |
n
|
int
|
The output dimension of the head. |
required |
l
|
int
|
The number of parameter for each channel in the head. |
None
|
channel_num
|
int
|
The number of channels in the head. |
1
|
data_transformation
|
transformation
|
The data transformation function of the head. The data transformation can be initialized directly with this parameter or with the data_transformation_config parameter. |
None
|
parameter_fabrication
|
fabrication
|
The parameter fabrication function of the head. The parameter fabrication can be initialized directly with this parameter or with the parameter_fabrication_config parameter. |
None
|
remainder
|
remainder
|
The remainder function the head. The remainder can be initialized directly with this parameter or with the remainder_config parameter. |
None
|
output_process_functions
|
The output processing functions. The output processing function can be initialized directly with this parameter or with the output_processing_function_configs parameter. |
None
|
|
data_transformation_configs
|
The data transformation function configuration. |
None
|
|
parameter_fabrication_configs
|
The parameter fabrication function configuration. |
None
|
|
remainder_configs
|
The remainder function configuration. |
None
|
|
output_process_function_configs
|
The output processing function configuration. |
None
|
|
device
|
The device for hosting the head. |
'cpu'
|
Returns:
Type | Description |
---|---|
object
|
This method will return the initialized RPN-head object. |
Source code in tinybig/module/base_head.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
calculate_attribute_xi_x(x, channel_index=0, kappa_x=None, device='cpu', *args, **kwargs)
Computes the attribute interdependence \(\xi_{\text{attribute}}(\mathbf{x})\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input data to compute the attribute interdependence. |
required |
channel_index
|
int
|
The index of the channel for which interdependence is computed. |
0
|
kappa_x
|
Tensor
|
The precomputed transformed data to use for interdependence calculation. |
None
|
device
|
The device to execute the interdependence calculation. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The attribute interdependence \(\xi_{\text{attribute}}(\mathbf{x})\). |
Source code in tinybig/module/base_head.py
calculate_inner_product(kappa_xi_x, phi_w, device='cpu', *args, **kwargs)
Computes the inner product of \(\kappa(\mathbf{x})\) and \(\psi(\mathbf{w})\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kappa_xi_x
|
Tensor
|
The transformed and interdependent input data. |
required |
phi_w
|
Tensor
|
The reconciled parameters. |
required |
device
|
str
|
The device hosting the operation. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The inner product of the transformed data and parameters. |
Source code in tinybig/module/base_head.py
calculate_instance_xi_x(x, channel_index=0, kappa_x=None, device='cpu', *args, **kwargs)
Computes the instance interdependence \(\xi_{\text{instance}}(\mathbf{x})\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input data to compute the instance interdependence. |
required |
channel_index
|
int
|
The index of the channel for which interdependence is computed. |
0
|
kappa_x
|
Tensor
|
The precomputed transformed data to use for interdependence calculation. |
None
|
device
|
The device to execute the interdependence calculation. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The instance interdependence \(\xi_{\text{instance}}(\mathbf{x})\). |
Source code in tinybig/module/base_head.py
calculate_kappa_x(x, device='cpu', *args, **kwargs)
Computes the transformed data \(\kappa(\mathbf{x})\) using the data transformation function.
If no data transformation function is defined, the input data is returned as-is.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input data to be transformed. |
required |
device
|
The device to execute the data transformation. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The transformed data \(\kappa(\mathbf{x})\). |
Source code in tinybig/module/base_head.py
calculate_kappa_xi_x(x, channel_index=0, device='cpu', *args, **kwargs)
Computes the combined transformed and interdependent data \(\kappa(\xi(\mathbf{x}))\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input data to compute the combined transformation and interdependence. |
required |
channel_index
|
int
|
The index of the channel for which the computation is performed. |
0
|
device
|
The device to execute the computation. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The combined transformed and interdependent data \(\kappa(\xi(\mathbf{x}))\). |
Source code in tinybig/module/base_head.py
calculate_phi_w(D, channel_index=0, device='cpu', *args, **kwargs)
Computes the reconciled parameters \(\psi(\mathbf{w})\) for a specific channel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
D
|
int
|
The dimensionality of the transformed data \(\kappa(\mathbf{x})\). |
required |
channel_index
|
int
|
The index of the channel for which parameters are computed. |
0
|
device
|
The device to execute the parameter reconciliation. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor or None
|
The reconciled parameters \(\psi(\mathbf{w})\) for the specified channel, or None if not applicable. |
Source code in tinybig/module/base_head.py
calculate_pi_x(x, device='cpu', *args, **kwargs)
Computes the remainder term \(\pi(\mathbf{x})\) using the remainder function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input data to compute the remainder term. |
required |
device
|
The device to execute the remainder calculation. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor or None
|
The remainder term \(\pi(\mathbf{x})\) if a remainder function is defined, otherwise None. |
Source code in tinybig/module/base_head.py
create_learnable_parameters(initialize_parameter_at_creation=False, init_type='xavier_uniform', init_bias=True, *args, **kwargs)
Creates learnable parameters for the head.
This method creates parameters for data transformation, parameter reconciliation, remainder functions, and channel fusion based on the head configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
initialize_parameter_at_creation
|
bool
|
Whether to initialize parameters during creation. |
False
|
init_type
|
str
|
The initialization method for parameters. |
'xavier_uniform'
|
init_bias
|
bool
|
Whether to initialize bias parameters. |
True
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in tinybig/module/base_head.py
forward(x, device='cpu', *args, **kwargs)
The forward method of the RPN head module.
Based on the data expansion, parameter reconciliation and remainder functions, the RPN head will calculate its output with multi-channel parameters as follows: $$ \begin{equation} g(\mathbf{x} | \mathbf{w}, C) = \sum_{c=0}^{C-1} \left\langle \kappa(\mathbf{x}), \psi(\mathbf{w}^{c}) \right\rangle + \pi(\mathbf{x}), \end{equation} $$ where these multi-channel parameters \(\mathbf{w}^{0}, \mathbf{w}^{1}, \cdots, \mathbf{w}^{C-1}\) are fabricated from length \(l\) to shape \((n, D)\) using the identical parameter reconciliation function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input data vector. |
required |
device
|
The device for hosting the head. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The processed output of the head. |
Source code in tinybig/module/base_head.py
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 |
|
fusion(inner_products, device='cpu', *args, **kwargs)
Combines the multi-channel outputs into a single output.
If a channel fusion function is defined, it applies the function to combine the inner product results. Otherwise, it returns the first channel's result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inner_products
|
list[Tensor]
|
The inner products computed from each channel. |
required |
device
|
str
|
The device hosting the operation. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The fused output. |
Source code in tinybig/module/base_head.py
get_batch_num()
Retrieves the batch size used in instance interdependence functions.
Returns:
Type | Description |
---|---|
int or None
|
The batch size used for instance interdependence, or None if not specified. |
Source code in tinybig/module/base_head.py
get_channel_num()
Retrieves the number of channels in the head.
Returns:
Type | Description |
---|---|
int
|
The number of channels in the head. |
get_m()
Retrieves the input dimension (m
) of the head.
Returns:
Type | Description |
---|---|
int
|
The input dimension of the head. |
get_n()
Retrieves the output dimension (n
) of the head.
Returns:
Type | Description |
---|---|
int
|
The output dimension of the head. |
initialize_parameters(init_type='xavier_uniform', init_bias=True, *args, **kwargs)
The parameter initialization method.
It initializes the multi-channel parameters in the head with different initialization approaches, e.g., xavier_uniform or kaiming_uniform. Depending on the "init_type" parameter, this method will call the corresponding initiation methods.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
init_type
|
The parameter initialization approach. |
'xavier_uniform'
|
|
init_bias
|
The boolean tag of bias initialization. |
True
|
Returns:
Type | Description |
---|---|
None
|
This initialization method doesn't have any return values. |
Source code in tinybig/module/base_head.py
initialize_parameters_fanout_std_uniform(init_bias=True, fan_out=None, *args, **kwargs)
The kaiming parameter initialization method.
It initializes the multi-channel parameters in the head with kaiming_uniform_ method from pytorch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
init_bias
|
The boolean tag of bias initialization. |
True
|
Returns:
Type | Description |
---|---|
None
|
This initialization method doesn't have any return values. |
Source code in tinybig/module/base_head.py
initialize_parameters_kaiming_uniform(init_bias=True, *args, **kwargs)
The kaiming parameter initialization method.
It initializes the multi-channel parameters in the head with kaiming_uniform_ method from pytorch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
init_bias
|
The boolean tag of bias initialization. |
True
|
Returns:
Type | Description |
---|---|
None
|
This initialization method doesn't have any return values. |
Source code in tinybig/module/base_head.py
initialize_parameters_xavier_normal(init_bias=True, *args, **kwargs)
The xavier initialization method.
It initializes the multi-channel parameters in the head with xavier_uniform_ method from pytorch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
init_bias
|
The boolean tag of bias initialization. |
True
|
Returns:
Type | Description |
---|---|
None
|
This initialization method doesn't have any return values. |
Source code in tinybig/module/base_head.py
initialize_parameters_xavier_uniform(init_bias=True, *args, **kwargs)
The xavier initialization method.
It initializes the multi-channel parameters in the head with xavier_uniform_ method from pytorch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
init_bias
|
The boolean tag of bias initialization. |
True
|
Returns:
Type | Description |
---|---|
None
|
This initialization method doesn't have any return values. |
Source code in tinybig/module/base_head.py
to_config()
Converts the configuration of the head into a dictionary.
This includes the head's attributes, such as dimensions, transformation functions, interdependence functions, fabrication functions, and remainder functions.
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing the head's class and parameter configurations. |