fabrication
Bases: Module
, function
The base class of the parameter fabrication function in the tinyBIG toolkit.
It will be used as the base class template for defining the parameter reconciliation functions.
...
Notes
Formally, given the underlying data distribution mapping \(f: {R}^m \to {R}^n\) to be learned, the parameter reconciliation function \(\psi\) adjusts the available parameter vector of length \(l\) by fabricating a new parameter matrix of size \(n \times D\) to accommodate the expansion space dimension \(D\) as follows:
\[ \psi: {R}^l \to {R}^{n \times D}, \]
which is defined only on the parameters without any input data.
In most of the cases, the parameter vector length \(l\) is much smaller than the output matrix size \(n \times D\), i.e., \(l \ll n \times D\). Meanwhile, in practice, we can also define function \(\psi\) to fabricate a longer parameter vector into a smaller parameter matrix, i.e., \(l > n \times D\). To unify these different cases, the data reconciliation function can also be referred to as the "parameter fabrication function", and these function names will be used interchangeably.
Attributes:
Name | Type | Description |
---|---|---|
name |
str, default = 'base_fabrication'
|
Name of the parameter fabrication function. |
require_parameters |
bool, default = True
|
Boolean tag of whether the function requires parameters. |
enable_bias |
bool, default = False
|
Boolean tag of whether the bias is enabled or not. |
device |
str, default = 'cpu'
|
Device of the parameter fabrication function. |
Methods:
Name | Description |
---|---|
__init__ |
It initializes the parameter fabrication function. |
calculate_l |
It calculates the length of required parameters. |
forward |
The forward method to perform parameter fabrication. |
__call__ |
The build-in callable method of the parameter fabrication function. |
Source code in tinybig/module/base_fabrication.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
__init__(name='base_fabrication', require_parameters=True, enable_bias=False, device='cpu', *args, **kwargs)
The initialization method of the base parameter fabrication function.
It initializes a base parameter fabrication function object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the parameter fabrication function. |
'base_fabrication'
|
require_parameters
|
bool
|
Boolean tag of whether the function requires parameters. |
True
|
enable_bias
|
bool
|
Boolean tag of whether the bias is enabled or not. |
False
|
device
|
str
|
The device of the parameter fabrication function. |
'cpu'
|
Returns:
Type | Description |
---|---|
object
|
The parameter fabrication function object. |
Source code in tinybig/module/base_fabrication.py
calculate_l(n, D)
abstractmethod
The required parameter number calculation method.
It calculates the number of required learnable parameters, i.e., l, of the parameter reconciliation function based on the intermediate and output space dimensions, n and D. The method is declared as an abstractmethod and needs to be implemented in the inherited classes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
The dimension of the output space. |
required |
D
|
int
|
The dimension of the intermediate expansion space. |
required |
Returns:
Type | Description |
---|---|
int
|
The number of required learnable parameters l. |
Source code in tinybig/module/base_fabrication.py
forward(n, D, w, *args, **kwargs)
abstractmethod
The forward method of the parameter reconciliation function.
It applies the parameter reconciliation operation to the input parameter of length l, and returns the reconciled parameter matrix of shape (n, D). The method is declared as an abstractmethod and needs to be implemented in the inherited classes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
The dimension of the output space. |
required |
D
|
int
|
The dimension of the intermediate expansion space. |
required |
w
|
Parameter
|
The learnable parameters of the model of length l. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The reconciled parameter matrix of shape (n, D). |