svm
Bases: rpn
Support Vector Machine (SVM) model implemented as the RPN model.
This class defines an SVM model with customizable kernel functions, parameter reconciliation, and additional processing capabilities such as residual connections and multi-channel configurations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dims
|
list[int] | tuple[int]
|
A list or tuple of integers representing the dimensions of each layer. Must contain at least two dimensions. |
required |
name
|
str
|
The name of the SVM model. Default is 'rpn_svm'. |
'rpn_svm'
|
kernel
|
str
|
The kernel type to use. Options include 'linear', 'gaussian_rbf', and 'inverse_quadratic_rbf'. Default is 'linear'. |
'linear'
|
base_range
|
tuple
|
The base range for kernel expansion. Default is (-1, 1). |
(-1, 1)
|
num_interval
|
int
|
The number of intervals for kernel expansion. Default is 10. |
10
|
epsilon
|
float
|
Parameter for kernel approximation. Default is 1.0. |
1.0
|
enable_bias
|
bool
|
If True, enables bias in the layers. Default is False. |
False
|
with_lorr
|
bool
|
If True, enables low-rank parameterized reconciliation. Default is False. |
False
|
r
|
int
|
Rank parameter for low-rank reconciliation. Default is 3. |
3
|
with_residual
|
bool
|
If True, adds residual connections to the layers. Default is False. |
False
|
channel_num
|
int
|
The number of channels for each layer. Default is 1. |
1
|
width
|
int
|
The number of parallel heads in each layer. Default is 1. |
1
|
device
|
str
|
Device to perform computations ('cpu' or 'cuda'). Default is 'cpu'. |
'cpu'
|
*args
|
optional
|
Additional positional arguments for the superclass. |
()
|
**kwargs
|
optional
|
Additional keyword arguments for the superclass. |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If |
Warning
|
If more than two layers are defined, as SVMs typically use only two layers. |
Methods:
Name | Description |
---|---|
__init__ |
Initializes the SVM model with the specified parameters. |
Source code in tinybig/model/rpn_svm.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
__init__(dims, name='rpn_svm', kernel='linear', base_range=(-1, 1), num_interval=10, epsilon=1.0, enable_bias=False, with_lorr=False, r=3, with_residual=False, channel_num=1, width=1, device='cpu', *args, **kwargs)
Initialize the SVM model as a recursive parameterized network (RPN).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dims
|
list[int] | tuple[int]
|
A list or tuple of integers representing the dimensions of each layer. Must contain at least two dimensions. |
required |
name
|
str
|
The name of the SVM model. Default is 'rpn_svm'. |
'rpn_svm'
|
kernel
|
str
|
The kernel type to use. Options include 'linear', 'gaussian_rbf', and 'inverse_quadratic_rbf'. Default is 'linear'. |
'linear'
|
base_range
|
tuple
|
The base range for kernel expansion. Default is (-1, 1). |
(-1, 1)
|
num_interval
|
int
|
The number of intervals for kernel expansion. Default is 10. |
10
|
epsilon
|
float
|
Parameter for kernel approximation. Default is 1.0. |
1.0
|
enable_bias
|
bool
|
If True, enables bias in the layers. Default is False. |
False
|
with_lorr
|
bool
|
If True, enables low-rank parameterized reconciliation. Default is False. |
False
|
r
|
int
|
Rank parameter for low-rank reconciliation. Default is 3. |
3
|
with_residual
|
bool
|
If True, adds residual connections to the layers. Default is False. |
False
|
channel_num
|
int
|
The number of channels for each layer. Default is 1. |
1
|
width
|
int
|
The number of parallel heads in each layer. Default is 1. |
1
|
device
|
str
|
Device to perform computations ('cpu' or 'cuda'). Default is 'cpu'. |
'cpu'
|
*args
|
optional
|
Additional positional arguments for the superclass. |
()
|
**kwargs
|
optional
|
Additional keyword arguments for the superclass. |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If |
Warning
|
If more than two layers are defined, as SVMs typically use only two layers. |
Source code in tinybig/model/rpn_svm.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|