pgm
Bases: rpn
A Probabilistic Graphical Model (PGM) implemented using the RPN framework.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dims
|
list[int] | tuple[int]
|
A list or tuple of integers representing the dimensions of each layer in the PGM model. Must contain at least two dimensions. |
required |
name
|
str
|
The name of the PGM model. Default is 'rpn_bayesian_network'. |
'rpn_bayesian_network'
|
distribution
|
str
|
The type of distribution to use for data transformation. Supported options are: 'normal', 'exponential', 'cauchy', 'gamma', 'laplace', and 'chi2'. Default is 'normal'. |
'normal'
|
d
|
int
|
The degree for combinatorial expansion in the distribution. Default is 2. |
2
|
with_replacement
|
bool
|
Whether to allow replacement in combinatorial expansion. Default is False. |
False
|
enable_bias
|
bool
|
Whether to enable bias in the layers. Default is False. |
False
|
with_lorr
|
bool
|
Whether to use LoRR (Low-Rank Representation) for parameter reconciliation. Default is False. |
False
|
r
|
int
|
The rank for the LoRR parameter reconciliation. Default is 3. |
3
|
with_residual
|
bool
|
Whether to enable residual connections in the layers. Default is False. |
False
|
channel_num
|
int
|
The number of channels in each layer. Default is 1. |
1
|
width
|
int
|
The number of parallel heads in each layer. Default is 1. |
1
|
device
|
str
|
The device to use for computation ('cpu' or 'cuda'). Default is 'cpu'. |
'cpu'
|
*args
|
optional
|
Additional positional arguments for the |
()
|
**kwargs
|
optional
|
Additional keyword arguments for the |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If |
Warning
|
If |
Methods:
Name | Description |
---|---|
__init__ |
Initializes the PGM model and builds its layers. |
Source code in tinybig/model/rpn_pgm.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
__init__(dims, name='rpn_bayesian_network', distribution='normal', d=2, with_replacement=False, enable_bias=False, with_lorr=False, r=3, with_residual=False, channel_num=1, width=1, device='cpu', *args, **kwargs)
Initializes the Probabilistic Graphical Model (PGM).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dims
|
list[int] | tuple[int]
|
A list or tuple of integers representing the dimensions of each layer in the PGM model. Must contain at least two dimensions. |
required |
name
|
str
|
The name of the PGM model. Default is 'rpn_bayesian_network'. |
'rpn_bayesian_network'
|
distribution
|
str
|
The type of distribution to use for data transformation. Supported options are: 'normal', 'exponential', 'cauchy', 'gamma', 'laplace', and 'chi2'. Default is 'normal'. |
'normal'
|
d
|
int
|
The degree for combinatorial expansion in the distribution. Default is 2. |
2
|
with_replacement
|
bool
|
Whether to allow replacement in combinatorial expansion. Default is False. |
False
|
enable_bias
|
bool
|
Whether to enable bias in the layers. Default is False. |
False
|
with_lorr
|
bool
|
Whether to use LoRR (Low-Rank Representation) for parameter reconciliation. Default is False. |
False
|
r
|
int
|
The rank for the LoRR parameter reconciliation. Default is 3. |
3
|
with_residual
|
bool
|
Whether to enable residual connections in the layers. Default is False. |
False
|
channel_num
|
int
|
The number of channels in each layer. Default is 1. |
1
|
width
|
int
|
The number of parallel heads in each layer. Default is 1. |
1
|
device
|
str
|
The device to use for computation ('cpu' or 'cuda'). Default is 'cpu'. |
'cpu'
|
*args
|
optional
|
Additional positional arguments for the |
()
|
**kwargs
|
optional
|
Additional keyword arguments for the |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If |
Warning
|
If |