dog_wavelet
Bases: discrete_wavelet
Difference of Gaussians (DoG) wavelet implementation.
Source code in tinybig/koala/signal_processing/wavelet.py
__init__(sigma_1=1.0, sigma_2=2.0, name='difference_of_Gaussians_wavelet', *args, **kwargs)
Initialize the DoG wavelet.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sigma_1
|
float
|
Standard deviation of the first Gaussian. Must be >= 0. Default is 1.0. |
1.0
|
sigma_2
|
float
|
Standard deviation of the second Gaussian. Must be >= 0. Default is 2.0. |
2.0
|
name
|
str
|
Name of the wavelet. Default is 'difference_of_Gaussians_wavelet'. |
'difference_of_Gaussians_wavelet'
|
*args
|
Additional parameters. |
()
|
|
**kwargs
|
Additional parameters. |
()
|
Source code in tinybig/koala/signal_processing/wavelet.py
psi(tau)
Define the DoG wavelet function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tau
|
Tensor
|
Transformed input values. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Wavelet values for the input. |