incremental_dimension_reduction
Bases: object
A base class for incremental dimension reduction methods.
This class provides a framework for implementing incremental dimension reduction techniques, with methods for setting the number of features, fitting, transforming, and reducing data.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
The name of the dimension reduction method. |
n_feature |
(int, optional)
|
The number of features to retain after reduction. |
incremental |
(bool, optional)
|
Whether the dimension reduction is performed incrementally. |
Methods:
Name | Description |
---|---|
get_n_feature |
Retrieve the number of features to retain. |
set_n_feature |
Set the number of features to retain. |
__call__ |
Forward the input data through the dimension reduction process. |
forward |
Perform dimension reduction on the input data. |
fit_transform |
Fit the model to the input data and reduce its dimensionality. |
fit |
Abstract method for fitting the model to the input data. |
transform |
Abstract method for transforming input data based on the fitted model. |
Source code in tinybig/koala/machine_learning/dimension_reduction/incremental_dimension_reduction.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
__call__(X, device='cup', *args, **kwargs)
Forward the input data through the dimension reduction process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
Union[ndarray, Tensor]
|
The input data to reduce. |
required |
device
|
str
|
The device to use for computation ('cpu' or 'cuda'). Default is 'cup'. |
'cup'
|
*args
|
Additional arguments for the forward process. |
()
|
|
**kwargs
|
Additional arguments for the forward process. |
()
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The reduced input data. |
Source code in tinybig/koala/machine_learning/dimension_reduction/incremental_dimension_reduction.py
__init__(name='incremental_dimension_reduction', n_feature=None, incremental=True, *args, **kwargs)
Initialize the incremental dimension reduction class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the dimension reduction method. Default is 'incremental_dimension_reduction'. |
'incremental_dimension_reduction'
|
n_feature
|
int
|
The number of features to retain after reduction. Default is None. |
None
|
incremental
|
bool
|
Whether the dimension reduction is performed incrementally. Default is True. |
True
|
*args
|
Additional arguments for subclass initialization. |
()
|
|
**kwargs
|
Additional arguments for subclass initialization. |
()
|
Source code in tinybig/koala/machine_learning/dimension_reduction/incremental_dimension_reduction.py
fit(X, device='cup', *args, **kwargs)
abstractmethod
Abstract method for fitting the model to the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
Union[ndarray, Tensor]
|
The input data to fit. |
required |
device
|
str
|
The device to use for computation ('cpu' or 'cuda'). Default is 'cup'. |
'cup'
|
*args
|
Additional arguments for the fitting process. |
()
|
|
**kwargs
|
Additional arguments for the fitting process. |
()
|
Raises:
Type | Description |
---|---|
NotImplementedError
|
This method must be implemented in subclasses. |
Source code in tinybig/koala/machine_learning/dimension_reduction/incremental_dimension_reduction.py
fit_transform(X, device='cup', *args, **kwargs)
Fit the model to the input data and reduce its dimensionality.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
Union[ndarray, Tensor]
|
The input data to reduce. |
required |
device
|
str
|
The device to use for computation ('cpu' or 'cuda'). Default is 'cup'. |
'cup'
|
*args
|
Additional arguments for the fit and transform processes. |
()
|
|
**kwargs
|
Additional arguments for the fit and transform processes. |
()
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The reduced input data. |
Source code in tinybig/koala/machine_learning/dimension_reduction/incremental_dimension_reduction.py
forward(X, device='cup', *args, **kwargs)
Perform dimension reduction on the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
Union[ndarray, Tensor]
|
The input data to reduce. |
required |
device
|
str
|
The device to use for computation ('cpu' or 'cuda'). Default is 'cup'. |
'cup'
|
*args
|
Additional arguments for the forward process. |
()
|
|
**kwargs
|
Additional arguments for the forward process. |
()
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The reduced input data. |
Source code in tinybig/koala/machine_learning/dimension_reduction/incremental_dimension_reduction.py
get_n_feature()
Retrieve the number of features to retain.
Returns:
Type | Description |
---|---|
int
|
The number of features to retain. |
set_n_feature(n_feature)
Set the number of features to retain.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_feature
|
int
|
The number of features to retain. |
required |
Source code in tinybig/koala/machine_learning/dimension_reduction/incremental_dimension_reduction.py
transform(X, device='cup', *args, **kwargs)
abstractmethod
Abstract method for transforming input data based on the fitted model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
Union[ndarray, Tensor]
|
The input data to transform. |
required |
device
|
str
|
The device to use for computation ('cpu' or 'cuda'). Default is 'cup'. |
'cup'
|
*args
|
Additional arguments for the transformation process. |
()
|
|
**kwargs
|
Additional arguments for the transformation process. |
()
|
Raises:
Type | Description |
---|---|
NotImplementedError
|
This method must be implemented in subclasses. |