pearson_correlation_interdependence
Bases: statistical_kernel_based_interdependence
A statistical kernel-based interdependence class using the Pearson correlation kernel.
Notes
Pearson Correlation based Kernel:
$$ \begin{equation} \text{kernel}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^b (\frac{\mathbf{x}(i) - \mu_x}{\sigma_x} ) (\frac{\mathbf{y}(i) - \mu_y}{\sigma_y} )}{b}, \end{equation} $$ where \(\mu_x, \mu_y, \sigma_x, \sigma_y\) are the mean and std.
Attributes:
Name | Type | Description |
---|---|---|
kernel |
Callable
|
The Pearson correlation kernel function. |
Methods:
Name | Description |
---|---|
__init__ |
Initializes the Pearson correlation interdependence function. |
Source code in tinybig/interdependence/statistical_kernel_interdependence.py
__init__(name='pearson_correlation_interdependence', *args, **kwargs)
Initializes the Pearson correlation interdependence function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the interdependence function. Defaults to 'pearson_correlation_interdependence'. |
'pearson_correlation_interdependence'
|
*args
|
tuple
|
Additional positional arguments for the parent class. |
()
|
**kwargs
|
dict
|
Additional keyword arguments for the parent class. |
{}
|