mutual_information_interdependence
Bases: statistical_kernel_based_interdependence
A statistical kernel-based interdependence class using the mutual information kernel.
Notes
Mutual Information based Kernel:
\[ \begin{equation} \text{kernel}(\mathbf{x}, \mathbf{y}) = \frac{1}{2} \log \left( \frac{ det(\Sigma_x) det( \Sigma_y) }{det \left( \Sigma \right)} \right). \end{equation} \]
where \(\Sigma_{x}\) and \(\Sigma_{y}\) denote the variance matrix of \(\mathbf{x}\) and \(\mathbf{y}\) respectively.
Notation \(\Sigma\) is the co-variance matrix of the joint variables \(\mathbf{x}\) and \(\mathbf{y}\), which can be represented as follows:
\[ \begin{equation} \Sigma = \begin{bmatrix} \Sigma_x & \Sigma_{x,y} \\ \Sigma_{y,x} & \Sigma_y \end{bmatrix}. \end{equation} \]
Attributes:
Name | Type | Description |
---|---|---|
kernel |
Callable
|
The mutual information kernel function. |
Methods:
Name | Description |
---|---|
__init__ |
Initializes the mutual information interdependence function. |
Source code in tinybig/interdependence/statistical_kernel_interdependence.py
__init__(name='mutual_information_interdependence', *args, **kwargs)
Initializes the mutual information interdependence function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the interdependence function. Defaults to 'mutual_information_interdependence'. |
'mutual_information_interdependence'
|
*args
|
tuple
|
Additional positional arguments for the parent class. |
()
|
**kwargs
|
dict
|
Additional keyword arguments for the parent class. |
{}
|