lowrank_parameterized_bilinear_interdependence
Bases: parameterized_bilinear_interdependence
A low-rank parameterized bilinear interdependence function.
Notes
Formally, given a data batch \(\mathbf{X} \in R^{b \times m}\), we can represent the parameterized bilinear form-based interdependence function as follows:
\[ \begin{equation}\label{equ:bilinear_interdependence_function} \xi(\mathbf{X} | \mathbf{w}) = \mathbf{X}^\top \mathbf{W} \mathbf{X} = \mathbf{A} \in R^{m \times m}. \end{equation} \]
Notation \(\mathbf{W} \in R^{b \times b}\) denotes the parameter matrix fabricated from the learnable parameter vector \(\mathbf{w} \in R^{l_{\xi}}\), which can be represented as follows:
$$ \begin{equation} \psi(\mathbf{w}) = \mathbf{A} \mathbf{B}^\top \in R^{b \times b}, \end{equation} $$ where \(\mathbf{A} \in R^{b \times r}\) and \(\mathbf{B} \in R^{b \times r}\) are partitioned and reshaped from the parameter vector \(\mathbf{w}\).
The required length of parameter vector of this interdependence function is \(l_{\xi} = (b + b) \times r\).
Attributes:
Name | Type | Description |
---|---|---|
r |
int
|
Rank of the low-rank approximation. |
Methods:
Name | Description |
---|---|
__init__ |
Initializes the low-rank parameterized bilinear interdependence function. |
Source code in tinybig/interdependence/parameterized_bilinear_interdependence.py
__init__(r=2, name='lowrank_parameterized_bilinear_interdependence', *args, **kwargs)
Initializes the low-rank parameterized bilinear interdependence function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
r
|
int
|
Rank of the low-rank approximation. Defaults to 2. |
2
|
name
|
str
|
Name of the interdependence function. Defaults to 'lowrank_parameterized_bilinear_interdependence'. |
'lowrank_parameterized_bilinear_interdependence'
|
*args
|
tuple
|
Additional positional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|