Skip to content

chain_interdependence

Bases: interdependence

Source code in tinybig/interdependence/topological_interdependence.py
class chain_interdependence(interdependence):

    def __init__(
        self,
        b: int, m: int,
        interdependence_type: str = 'instance',
        name: str = 'chain_interdependence',
        chain: chain_structure = None,
        chain_length: int = None, bi_directional: bool = False,
        normalization: bool = False, normalization_mode: str = 'row',
        self_dependence: bool = True, self_scaling: float = 1.0,
        require_data: bool = False, require_parameters: bool = False,
        device: str = 'cpu', *args, **kwargs
    ):
        super().__init__(b=b, m=m, name=name, interdependence_type=interdependence_type, require_data=require_data, require_parameters=require_parameters, device=device, *args, **kwargs)

        if chain is not None:
            self.chain = chain
        elif chain_length is not None:
            self.chain = chain_structure(length=chain_length, bi_directional=bi_directional)
        else:
            raise ValueError('Either chain structure of chain length must be provided...')

        self.node_id_index_map = None
        self.node_index_id_map = None

        self.normalization = normalization
        self.normalization_mode = normalization_mode
        self.self_dependence = self_dependence
        self.self_scaling = self_scaling

    def is_bi_directional(self):
        return not self.chain.is_directed()

    def calculate_A(self, x: torch.Tensor = None, w: torch.nn.Parameter = None, device: str = 'cpu', *args, **kwargs):
        if not self.require_data and not self.require_parameters and self.A is not None:
            return self.A
        else:
            adj, mappings = self.chain.to_matrix(
                self_dependence=self.self_dependence,
                self_scaling=self.self_scaling,
                normalization=self.normalization,
                normalization_mode=self.normalization_mode,
                device=device
            )

            self.node_id_index_map = mappings['node_id_index_map']
            self.node_index_id_map = mappings['node_index_id_map']

            A = self.post_process(x=adj, device=device)

            if self.interdependence_type in ['column', 'right', 'attribute', 'attribute_interdependence']:
                assert A.shape == (self.m, self.calculate_m_prime())
            elif self.interdependence_type in ['row', 'left', 'instance', 'instance_interdependence']:
                assert A.shape == (self.b, self.calculate_b_prime())

            if not self.require_data and not self.require_parameters and self.A is None:
                self.A = A
            return A