tinybig.interdependence
This module provides the "data interdependence functions" that can be used to build the RPN model within the tinyBIG toolkit.
Data Interdependence Function
The data interdependence functions \(\xi\) capture the intricate interdependence relationships among data instances and attributes. These functions will extract nuanced information from the input data batch, operating both prior to and following the data projection facilitated by function \(\kappa\).
Formally, given an input data batch \(\mathbf{X} \in {R}^{b \times m}\) (with \(b\) instances and each instance with \(m\) attributes), the attribute and instance data interdependence functions are defined as:
\[ \begin{equation} \xi_a: {R}^{b \times m} \to {R}^{m \times m'} \text{, and } \xi_i: {R}^{b \times m} \to {R}^{b \times b'}, \end{equation} \]
where \(m'\) and \(b'\) denote the output dimensions of their respective interdependence functions, respectively.
Data Interdependent Transformation Function
To elucidate the mechanisms of attribute and instance interdependence functions in defining the data interdependence transformation function \(\kappa_{\xi}\), we shall consider a multi-instance input data batch \(\mathbf{X} \in {R}^{b \times m}\) as an exemplar. Here, \(b\) and \(m\) denote the number of instances and attributes, respectively. Given this input data batch \(\mathbf{X}\), we can formulate the data interdependence transformation function \(\kappa_{\xi}\) as follows:
\[ \begin{equation} \kappa_{\xi}(\mathbf{X}) = \mathbf{A}^\top_{\xi_i} \kappa(\mathbf{X} \mathbf{A}_{\xi_a}) \in {R}^{b' \times D}. \end{equation} \]
These attribute and instance interdependence matrices \(\mathbf{A}_{\xi_a} \in {R}^{m \times m'}\) and \(\mathbf{A}_{\xi_i} \in {R}^{b \times b'}\) are computed with the corresponding interdependence functions defined above, i.e.,
\[ \begin{equation} \mathbf{A}_{\xi_a} = \xi_a(\mathbf{X}) \in {R}^{m \times m'} \text{, and } \mathbf{A}_{\xi_i} = \xi_i(\mathbf{X}) \in {R}^{b \times b'}. \end{equation} \]
The dimension of the target transformation space, denoted as \(D\), is determined by the codomain dimension \(m'\) of the attribute interdependence function. In most cases, the domain and codomain dimensions of the attribute and instance dependence functions analyzed in this paper are identical, i.e., \(m' = m\) and \(b' = b\).
Classes in this Module
This module contains the following categories of compression functions:
- Basic interdependence functions
- Geometric interdependence functions (based on the cuboid, cylinder and sphere patch shapes)
- Topological interdependence functions (based on graph and chain structures)
- Kernel based interdependence functions
- Parameterized interdependence functions
- Parameterized bilinear interdependence functions
- Parameterized RPN based interdependence functions
- Hybrid interdependence functions
Organization of this Module
Interdependence Function
- interdependence (defined in the tinybig.module directory)
Basic Interdependence Functions
- constant_interdependence
- constant_c_interdependence
- zero_interdependence
- one_interdependence
- identity_interdependence
Statistical Kernel based Interdependence Functions
- statistical_kernel_based_interdependence
- kl_divergence_interdependence
- pearson_correlation_interdependence
- rv_coefficient_interdependence
- mutual_information_interdependence
Numerical Kernel based Interdependence Functions
- numerical_kernel_based_interdependence
- linear_kernel_interdependence
- polynomial_kernel_interdependence
- hyperbolic_tangent_kernel_interdependence
- exponential_kernel_interdependence
- minkowski_distance_interdependence
- manhattan_distance_interdependence
- euclidean_distance_interdependence
- chebyshev_distance_interdependence
- canberra_distance_interdependence
- cosine_similarity_interdependence
- gaussian_rbf_kernel_interdependence
- laplacian_kernel_interdependence
- anisotropic_rbf_kernel_interdependence
- custom_hybrid_kernel_interdependence
Parameterized Interdependence Functions
- parameterized_interdependence
- lowrank_parameterized_interdependence
- hm_parameterized_interdependence
- lphm_parameterized_interdependence
- dual_lphm_parameterized_interdependence
- random_matrix_adaption_parameterized_interdependence
Parameterized Bilinear Interdependence Functions
- parameterized_bilinear_interdependence
- lowrank_parameterized_bilinear_interdependence
- hm_parameterized_bilinear_interdependence
- lphm_parameterized_bilinear_interdependence
- dual_lphm_parameterized_bilinear_interdependence
- random_matrix_adaption_parameterized_bilinear_interdependence
Topological Structural Interdependence Functions
- graph_interdependence
- multihop_graph_interdependence
- pagerank_multihop_graph_interdependence
- chain_interdependence
- multihop_chain_interdependence
- inverse_approx_multihop_chain_interdependence
- exponential_approx_multihop_chain_interdependence
Geometric Structural Interdependence Functions
- geometric_interdependence
- cuboid_patch_based_geometric_interdependence
- cuboid_patch_padding_based_geometric_interdependence
- cuboid_patch_aggregation_based_geometric_interdependence
- cylinder_patch_based_geometric_interdependence
- cylinder_patch_padding_based_geometric_interdependence
- cylinder_patch_aggregation_based_geometric_interdependence
- sphere_patch_based_geometric_interdependence
- sphere_patch_padding_based_geometric_interdependence
- sphere_patch_aggregation_based_geometric_interdependence