class perceptron_head(head):
def __init__(
self, m: int, n: int,
name: str = 'perceptron_head',
channel_num: int = 1,
# data expansion function
with_bspline: bool = False,
with_taylor: bool = False, d: int = 2,
with_hybrid_expansion: bool = False,
# parameter reconciliation function parameters
with_dual_lphm: bool = False,
with_lorr: bool = False, r: int = 3,
enable_bias: bool = True,
# remainder function parameters
with_residual: bool = False,
# output processing function parameters
with_batch_norm: bool = False,
with_relu: bool = False,
with_dropout: bool = True, p: float = 0.5,
with_softmax: bool = False,
# other parameters
parameters_init_method: str = 'xavier_normal',
device: str = 'cpu', *args, **kwargs
):
if with_taylor:
data_transformation = taylor_expansion(
d=d,
device=device,
)
elif with_bspline:
data_transformation = bspline_expansion(
d=d,
device=device,
)
else:
data_transformation = identity_expansion(
device=device,
)
print('** data_transformation', data_transformation)
if with_dual_lphm:
parameter_fabrication = dual_lphm_reconciliation(
r=r,
enable_bias=enable_bias,
device=device
)
elif with_lorr:
parameter_fabrication = lorr_reconciliation(
r=r,
enable_bias=enable_bias,
device=device,
)
else:
parameter_fabrication = identity_reconciliation(
enable_bias=enable_bias,
device=device,
)
print('** parameter_fabrication', parameter_fabrication)
if with_residual:
remainder = linear_remainder(
device=device
)
else:
remainder = zero_remainder(
device=device,
)
print('** remainder', remainder)
output_process_functions = []
if with_batch_norm:
output_process_functions.append(torch.nn.BatchNorm1d(num_features=n, device=device))
if with_relu:
output_process_functions.append(torch.nn.ReLU())
if with_dropout:
output_process_functions.append(torch.nn.Dropout(p=p))
if with_softmax:
output_process_functions.append(torch.nn.Softmax(dim=-1))
print('** output_process_functions', output_process_functions)
super().__init__(
m=m, n=n, name=name,
data_transformation=data_transformation,
parameter_fabrication=parameter_fabrication,
remainder=remainder,
output_process_functions=output_process_functions,
channel_num=channel_num,
parameters_init_method=parameters_init_method,
device=device, *args, **kwargs
)