chain_interdependence_head
Bases: head
A head class that implements chain-based interdependence mechanisms for multi-channel modules.
This head supports chain-based instance interdependence, various data transformations, parameter reconciliation, and customizable output processing functions.
Attributes:
Name | Type | Description |
---|---|---|
m |
int
|
Input dimension of the head. |
n |
int
|
Output dimension of the head. |
chain_length |
int
|
Length of the chain structure used for interdependence. |
channel_num |
int
|
Number of channels for multi-channel processing. |
name |
str
|
Name of the head. |
parameters_init_method |
str
|
Initialization method for parameters. |
device |
str
|
Device to host the head (e.g., 'cpu' or 'cuda'). |
Source code in tinybig/head/chain_based_heads.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
__init__(m, n, chain_length, channel_num=1, name='chain_interdependence_head', bi_directional=False, with_multihop=False, h=1, accumulative=False, with_inverse_approx=False, with_exponential_approx=False, self_dependence=True, self_scaling=1.0, with_taylor=False, d=2, with_dual_lphm=False, with_lorr=False, r=3, enable_bias=False, with_residual=False, with_batch_norm=False, with_relu=True, with_softmax=True, with_dropout=False, p=0.25, parameters_init_method='xavier_normal', device='cpu', *args, **kwargs)
Initialize a chain-based interdependence head.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
m
|
int
|
Input dimension of the head. |
required |
n
|
int
|
Output dimension of the head. |
required |
chain_length
|
int
|
Length of the chain structure used for interdependence. |
required |
channel_num
|
int
|
Number of channels for multi-channel processing, default is 1. |
1
|
name
|
str
|
Name of the head, default is 'chain_interdependence_head'. |
'chain_interdependence_head'
|
bi_directional
|
bool
|
Whether the chain is bi-directional, default is False. |
False
|
with_multihop
|
bool
|
Whether to enable multi-hop connections, default is False. |
False
|
h
|
int
|
Number of hops for multi-hop connections, default is 1. |
1
|
accumulative
|
bool
|
Whether the multi-hop connections are accumulative, default is False. |
False
|
with_inverse_approx
|
bool
|
Whether to use inverse approximation for chain interdependence, default is False. |
False
|
with_exponential_approx
|
bool
|
Whether to use exponential approximation for chain interdependence, default is False. |
False
|
self_dependence
|
bool
|
Whether to include self-dependence in the chain, default is True. |
True
|
self_scaling
|
float
|
Scaling factor for self-dependence, default is 1.0. |
1.0
|
with_taylor
|
bool
|
Whether to use Taylor expansion for data transformation, default is False. |
False
|
d
|
int
|
Degree of Taylor expansion, default is 2. |
2
|
with_dual_lphm
|
bool
|
Whether to use dual LPHM for parameter reconciliation, default is False. |
False
|
with_lorr
|
bool
|
Whether to use LORR for parameter reconciliation, default is False. |
False
|
r
|
int
|
Rank for parameter reconciliation, default is 3. |
3
|
enable_bias
|
bool
|
Whether to enable bias in parameter reconciliation, default is False. |
False
|
with_residual
|
bool
|
Whether to include a residual connection in the remainder function, default is False. |
False
|
with_batch_norm
|
bool
|
Whether to include batch normalization in output processing, default is False. |
False
|
with_relu
|
bool
|
Whether to include ReLU activation in output processing, default is True. |
True
|
with_softmax
|
bool
|
Whether to include softmax activation in output processing, default is True. |
True
|
with_dropout
|
bool
|
Whether to include dropout in output processing, default is False. |
False
|
p
|
float
|
Dropout probability, default is 0.25. |
0.25
|
parameters_init_method
|
str
|
Initialization method for parameters, default is 'xavier_normal'. |
'xavier_normal'
|
device
|
str
|
Device to host the head, default is 'cpu'. |
'cpu'
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in tinybig/head/chain_based_heads.py
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
calculate_inner_product(kappa_xi_x, phi_w, device='cpu', *args, **kwargs)
Calculate the inner product of transformed data and reconciled parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kappa_xi_x
|
Tensor
|
Transformed input data. |
required |
phi_w
|
Tensor
|
Reconciled parameter tensor. |
required |
device
|
str
|
Device to host the computation, default is 'cpu'. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
Resulting inner product tensor. |
Source code in tinybig/head/chain_based_heads.py
calculate_instance_xi_x(x, channel_index=0, kappa_x=None, device='cpu', *args, **kwargs)
Calculate the instance-based interdependence.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
channel_index
|
int
|
Index of the channel for multi-channel processing, default is 0. |
0
|
kappa_x
|
Tensor
|
Pre-computed transformation of the input, default is None. |
None
|
device
|
str
|
Device to host the computation, default is 'cpu'. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
Transformed tensor with interdependence applied. |
Source code in tinybig/head/chain_based_heads.py
calculate_pi_x(x, device='cpu', *args, **kwargs)
Calculate the remainder function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
device
|
str
|
Device to host the computation, default is 'cpu'. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
Remainder component, or None if not applicable. |
Source code in tinybig/head/chain_based_heads.py
fusion(inner_products, device='cpu', *args, **kwargs)
Fuse multi-channel inner products.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inner_products
|
list[Tensor]
|
List of inner product tensors for each channel. |
required |
device
|
str
|
Device to host the computation, default is 'cpu'. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
Fused tensor after combining all channels. |