mean_fusion
Bases: metric_fusion
A fusion mechanism that computes the element-wise mean across input tensors.
Notes
Formally, given the input interdependence matrices \(\mathbf{A}_1, \mathbf{A}_2, \ldots, \mathbf{A}_k \in R^{m \times n}\) of identical shapes, we can represent their fusion output as
\[ \begin{equation} \text{fusion}(\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_k) = \mathbf{A} \in R^{m \times n}, \end{equation} \]
where the entry \(\mathbf{A}(i, j)\) (for \(i \in \{1, 2, \cdots, m\}\) and \(j \in \{1, 2, \cdots, n\}\)) can be represented as
\[ \begin{equation} \mathbf{A}(i, j) = mean \left( \mathbf{A}_1(i,j), \mathbf{A}_2(i,j), \cdots, \mathbf{A}_k(i,j) \right). \end{equation} \]
Methods:
Name | Description |
---|---|
__init__ |
Initializes the mean fusion function. |
Source code in tinybig/fusion/metric_fusion.py
__init__(name='mean_fusion', *args, **kwargs)
Initializes the mean fusion function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the fusion function. Defaults to "mean_fusion". |
'mean_fusion'
|
*args
|
tuple
|
Additional positional arguments for the parent class. |
()
|
**kwargs
|
dict
|
Additional keyword arguments for the parent class. |
{}
|