taylor_expansion
Bases: transformation
The taylor's data expansion function.
It performs the taylor's expansion of the input vector, and returns the expansion result. The class inherits from the base expansion class (i.e., the transformation class in the module directory).
...
Notes
For input vector \(\mathbf{x} \in R^m\), its taylor's expansion will be $$ \begin{equation} \kappa (\mathbf{x} | d) = [P_1(\mathbf{x}), P_2(\mathbf{x}), \cdots, P_d(\mathbf{x}) ] \in {R}^D. \end{equation} $$ where \(P_d(\mathbf{x})\) denotes the taylor's expansion of \(\mathbf{x}\) of degree \(d\). The output dimension will then be \(D = \sum_{i=1}^d m^i\).
Specifically, \(P_d(\mathbf{x})\) can be recursively defined as follows: $$ \begin{align} P_0(\mathbf{x}) &= [1] \in {R}^{1},\\ P_1(\mathbf{x}) &= [x_1, x_2, \cdots, x_m] \in {R}^{m},\\ P_d(\mathbf{x}) &= P_1(\mathbf{x}) \otimes P_{d-1}(\mathbf{x}) \text{, for } \forall d \ge 2. \end{align} $$
By default, the input and output can also be processed with the optional pre- or post-processing functions in the taylor's expansion function.
Attributes:
Name | Type | Description |
---|---|---|
name |
str, default = 'taylor_expansion'
|
Name of the expansion function. |
d |
int, default = 2
|
Degree of taylor's expansion. |
Methods:
Name | Description |
---|---|
__init__ |
It performs the initialization of the expansion function. |
calculate_D |
It calculates the expansion space dimension D based on the input dimension parameter m. |
forward |
It implements the abstract forward method declared in the base expansion class. |
Source code in tinybig/expansion/polynomial_expansion.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
|
__init__(name='taylor_expansion', d=2, *args, **kwargs)
The initialization method of taylor's expansion function.
It initializes a taylor's expansion object based on the input function name. This method will also call the initialization method of the base class as well.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
The name of the taylor's expansion function. |
'taylor_expansion'
|
|
d
|
The max degree of the taylor's expansion. |
2
|
Returns:
Type | Description |
---|---|
transformation
|
The taylor's expansion function. |
Source code in tinybig/expansion/polynomial_expansion.py
calculate_D(m)
The expansion dimension calculation method.
It calculates the intermediate expansion space dimension based on the input dimension parameter m. For the taylor's expansion function, the expansion space dimension is determined by both m and d, which can be represented as:
\[ D = \sum_{i=1}^d m^i. \]
Notes
Taylor's expansion function will increase the expansion dimension exponentially and the degree parameter \(d\) is usually set with a small number. When the expansion dimension \(D > 10^7\) (i.e., more than 10 million), the function will raise a warning reminder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
m
|
int
|
The dimension of the input space. |
required |
Returns:
Type | Description |
---|---|
int
|
The dimension of the expansion space. |
Source code in tinybig/expansion/polynomial_expansion.py
forward(x, device='cpu', *args, **kwargs)
The forward method of the data expansion function.
It performs the taylor's data expansion of the input data and returns the expansion result according to the following equation: $$ \begin{equation} \kappa (\mathbf{x} | d) = [P_1(\mathbf{x}), P_2(\mathbf{x}), \cdots, P_d(\mathbf{x}) ] \in {R}^D. \end{equation} $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input data vector. |
required |
device
|
The device to perform the data expansion. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The expanded data vector of the input. |