Skip to content

reciprocal_expansion

Bases: transformation

The reciprocal data expansion function.

It performs the reciprocal expansion of the input vector, and returns the expansion result. The class inherits from the base expansion class (i.e., the transformation class in the module directory).

...

Notes

For input vector \(\mathbf{x} \in R^m\), its reciprocal expansion will be $$ \begin{equation} \kappa(\mathbf{x}) = \frac{1}{\mathbf{x}} \in R^D \end{equation} $$ where \(D = m\).

By default, the input and output can also be processed with the optional pre- or post-processing functions in the reciprocal expansion function.

Specifically, for very small positive and negative small values that are close to zero, the reciprocal expansion function will replace them with very small numbers \(10^{-6}\) and \(-10^{-6}\), respectively. In the current implementation, the input values in the range \([0, 10^{-6}]\) are replaced with \(10^{-6}\), and values in the range \([-10^{-6}, 0)\) are replaced with \(-10^{-6}\).

Attributes:

Name Type Description
name str, default = 'reciprocal_expansion'

Name of the expansion function.

Methods:

Name Description
__init__

It performs the initialization of the expansion function.

calculate_D

It calculates the expansion space dimension D based on the input dimension parameter m.

forward

It implements the abstract forward method declared in the base expansion class.

Source code in tinybig/expansion/basic_expansion.py
class reciprocal_expansion(transformation):
    r"""
    The reciprocal data expansion function.

    It performs the reciprocal expansion of the input vector, and returns the expansion result.
    The class inherits from the base expansion class (i.e., the transformation class in the module directory).

    ...

    Notes
    ----------
    For input vector $\mathbf{x} \in R^m$, its reciprocal expansion will be
    $$
        \begin{equation}
            \kappa(\mathbf{x}) = \frac{1}{\mathbf{x}} \in R^D
        \end{equation}
    $$
    where $D = m$.

    By default, the input and output can also be processed with the optional pre- or post-processing functions
    in the reciprocal expansion function.

    Specifically, for very small positive and negative small values that are close to zero, the reciprocal
    expansion function will replace them with very small numbers $10^{-6}$ and $-10^{-6}$, respectively.
    In the current implementation, the input values in the range $[0, 10^{-6}]$ are replaced with $10^{-6}$,
    and values in the range $[-10^{-6}, 0)$ are replaced with $-10^{-6}$.

    Attributes
    ----------
    name: str, default = 'reciprocal_expansion'
        Name of the expansion function.

    Methods
    ----------
    __init__
        It performs the initialization of the expansion function.

    calculate_D
        It calculates the expansion space dimension D based on the input dimension parameter m.

    forward
        It implements the abstract forward method declared in the base expansion class.

    """
    def __init__(self, name='reciprocal_expansion', *args, **kwargs):
        """
            The initialization method of the reciprocal expansion function.

            It initializes a reciprocal expansion object based on the input function name.
            This method will also call the initialization method of the base class as well.

            Parameters
            ----------
            name: str, default = 'reciprocal_expansion'
                The name of the reciprocal expansion function.

            Returns
            ----------
            transformation
                The reciprocal expansion function.
        """
        super().__init__(name=name, *args, **kwargs)

    def calculate_D(self, m: int):
        r"""
        The expansion dimension calculation method.

        It calculates the intermediate expansion space dimension based on the input dimension parameter m.
        For the reciprocal expansion function, the expansion space dimension equals to the input space dimension, i.e.,
        $$ D = m. $$

        Parameters
        ----------
        m: int
            The dimension of the input space.

        Returns
        -------
        int
            The dimension of the expansion space.
        """
        return m

    def forward(self, x: torch.Tensor, device='cpu', *args, **kwargs):
        r"""
        The forward method of the data expansion function.

        It performs the reciprocal data expansion of the input data and returns the expansion result
        according to the following equation:
        $$
            \kappa(\mathbf{x}) = \frac{1}{\mathbf{x}} \in R^D
        $$
        with optional pre- and post-processing functions.


        Parameters
        ----------
        x: torch.Tensor
            The input data vector.
        device: str, default = 'cpu'
            The device to perform the data expansion.
        args: list, default = ()
            The other parameters.
        kwargs: dict, default = {}
            The other parameters.

        Returns
        ----------
        torch.Tensor
            The expanded data vector of the input.
        """
        b, m = x.shape
        x = self.pre_process(x=x, device=device)

        x[torch.logical_and(x>=0, x<=1e-6)] = 1e-6
        x[torch.logical_and(x<0, x>=-1e-6)] = -1e-6
        expansion = torch.reciprocal(x)

        assert expansion.shape == (b, self.calculate_D(m=m))
        return self.post_process(x=expansion, device=device)

__init__(name='reciprocal_expansion', *args, **kwargs)

The initialization method of the reciprocal expansion function.

It initializes a reciprocal expansion object based on the input function name. This method will also call the initialization method of the base class as well.

Parameters:

Name Type Description Default
name

The name of the reciprocal expansion function.

'reciprocal_expansion'

Returns:

Type Description
transformation

The reciprocal expansion function.

Source code in tinybig/expansion/basic_expansion.py
def __init__(self, name='reciprocal_expansion', *args, **kwargs):
    """
        The initialization method of the reciprocal expansion function.

        It initializes a reciprocal expansion object based on the input function name.
        This method will also call the initialization method of the base class as well.

        Parameters
        ----------
        name: str, default = 'reciprocal_expansion'
            The name of the reciprocal expansion function.

        Returns
        ----------
        transformation
            The reciprocal expansion function.
    """
    super().__init__(name=name, *args, **kwargs)

calculate_D(m)

The expansion dimension calculation method.

It calculates the intermediate expansion space dimension based on the input dimension parameter m. For the reciprocal expansion function, the expansion space dimension equals to the input space dimension, i.e., $$ D = m. $$

Parameters:

Name Type Description Default
m int

The dimension of the input space.

required

Returns:

Type Description
int

The dimension of the expansion space.

Source code in tinybig/expansion/basic_expansion.py
def calculate_D(self, m: int):
    r"""
    The expansion dimension calculation method.

    It calculates the intermediate expansion space dimension based on the input dimension parameter m.
    For the reciprocal expansion function, the expansion space dimension equals to the input space dimension, i.e.,
    $$ D = m. $$

    Parameters
    ----------
    m: int
        The dimension of the input space.

    Returns
    -------
    int
        The dimension of the expansion space.
    """
    return m

forward(x, device='cpu', *args, **kwargs)

The forward method of the data expansion function.

It performs the reciprocal data expansion of the input data and returns the expansion result according to the following equation: $$ \kappa(\mathbf{x}) = \frac{1}{\mathbf{x}} \in R^D $$ with optional pre- and post-processing functions.

Parameters:

Name Type Description Default
x Tensor

The input data vector.

required
device

The device to perform the data expansion.

'cpu'
args

The other parameters.

()
kwargs

The other parameters.

{}

Returns:

Type Description
Tensor

The expanded data vector of the input.

Source code in tinybig/expansion/basic_expansion.py
def forward(self, x: torch.Tensor, device='cpu', *args, **kwargs):
    r"""
    The forward method of the data expansion function.

    It performs the reciprocal data expansion of the input data and returns the expansion result
    according to the following equation:
    $$
        \kappa(\mathbf{x}) = \frac{1}{\mathbf{x}} \in R^D
    $$
    with optional pre- and post-processing functions.


    Parameters
    ----------
    x: torch.Tensor
        The input data vector.
    device: str, default = 'cpu'
        The device to perform the data expansion.
    args: list, default = ()
        The other parameters.
    kwargs: dict, default = {}
        The other parameters.

    Returns
    ----------
    torch.Tensor
        The expanded data vector of the input.
    """
    b, m = x.shape
    x = self.pre_process(x=x, device=device)

    x[torch.logical_and(x>=0, x<=1e-6)] = 1e-6
    x[torch.logical_and(x<0, x>=-1e-6)] = -1e-6
    expansion = torch.reciprocal(x)

    assert expansion.shape == (b, self.calculate_D(m=m))
    return self.post_process(x=expansion, device=device)