lucas_expansion
Bases: transformation
The lucas expansion function.
Applies Lucas polynomial expansion to input data.
Notes
Formally, the Lucas polynomials are generated from the Lucas numbers in an analogous manner. The Lucas polynomials can be viewed as identical to the Fibonacci polynomials but with different base case representations, which can be recursively defined as follows:
Base cases \(n=0\) and \(n=1\):
\[ \begin{equation} L_0(x) = 2 \text{, and } L_1(x) = x. \end{equation} \]
High-order cases with degree \(n \ge 2\):
\[ \begin{equation} L_n(x) = x L_{n-1}(x) + L_{n-2}(x). \end{equation} \]
Based on these recursive representations, we can illustrate some examples of the Lucas polynomials as follows:
\[ \begin{equation} \begin{aligned} L_0(x) &= 2 \\ L_1(x) &= x \\ L_2(x) &= x^2 + 2 \\ L_3(x) &= x^3 + 3x \\ L_4(x) &= x^4 + 4x^2 + 2 \\ L_5(x) &= x^5 + 5x^3 + 5x \\ \end{aligned} \end{equation} \]
Based on the above Lucas polynomials, we can define the data expansion functions as follows: $$ \begin{equation} \kappa(\mathbf{x} | d) = \left[ L_1(\mathbf{x}), L_2(\mathbf{x}), \cdots, L_d(\mathbf{x}) \right] \in R^D, \end{equation} $$ where the output dimension \(D = md\).
Attributes:
Name | Type | Description |
---|---|---|
d |
int
|
The degree of Lucas polynomial expansion. |
Methods:
Name | Description |
---|---|
calculate_D |
Calculates the output dimension after expansion. |
forward |
Performs Lucas polynomial expansion on the input tensor. |
Source code in tinybig/expansion/orthogonal_polynomial_expansion.py
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 |
|
__init__(name='lucas_polynomial_expansion', d=2, *args, **kwargs)
Initializes the Lucas polynomial expansion transformation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the transformation. Defaults to 'lucas_polynomial_expansion'. |
'lucas_polynomial_expansion'
|
d
|
int
|
The maximum order of Lucas polynomials for expansion. Defaults to 2. |
2
|
*args
|
tuple
|
Additional positional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Source code in tinybig/expansion/orthogonal_polynomial_expansion.py
calculate_D(m)
Calculates the output dimension after Lucas polynomial expansion.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
m
|
int
|
Input dimension. |
required |
Returns:
Type | Description |
---|---|
int
|
Output dimension after expansion. |
Source code in tinybig/expansion/orthogonal_polynomial_expansion.py
forward(x, device='cpu', *args, **kwargs)
Performs Lucas polynomial expansion on the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor of shape |
required |
device
|
str
|
Device for computation ('cpu', 'cuda'). Defaults to 'cpu'. |
'cpu'
|
*args
|
tuple
|
Additional positional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
Tensor
|
Expanded tensor of shape |
Raises:
Type | Description |
---|---|
AssertionError
|
If the output tensor shape does not match the expected dimensions. |