identity_expansion
Bases: transformation
The identity data expansion function.
It performs the identity expansion of the input vector, and returns the expansion result. This class inherits from the expansion class (i.e., the transformation class in the module directory).
...
Notes
For the identity expansion function, the expansion space dimension equals to the input space dimension.
For input vector \(\mathbf{x} \in R^m\), its identity expansion will be $$ \begin{equation} \kappa(\mathbf{x}) = \sigma(\mathbf{x}) \in R^D \end{equation} $$ where \(D = m\). By default, we can also process the input with optional pre- or post-processing functions denoted by \(\sigma(\cdot)\) in the above formula.
Attributes:
Name | Type | Description |
---|---|---|
name |
str, default = 'identity_expansion'
|
Name of the expansion function. |
Methods:
Name | Description |
---|---|
__init__ |
It performs the initialization of the expansion function. |
calculate_D |
It calculates the expansion space dimension D based on the input dimension parameter m. |
forward |
It implements the abstract forward method declared in the base expansion class. |
Source code in tinybig/expansion/basic_expansion.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
__init__(name='identity_expansion', *args, **kwargs)
The initialization method of the identity expansion function.
It initializes an identity expansion object based on the input function name. This method will also call the initialization method of the base class as well.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
The name of the identity expansion function. |
'identity_expansion'
|
Returns:
Type | Description |
---|---|
transformation
|
The identity expansion function. |
Source code in tinybig/expansion/basic_expansion.py
calculate_D(m)
The expansion dimension calculation method.
It calculates the intermediate expansion space dimension based on the input dimension parameter m. For the identity expansion function, the expansion space dimension equals to the input space dimension, i.e., $$ D = m. $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
m
|
int
|
The dimension of the input space. |
required |
Returns:
Type | Description |
---|---|
int
|
The dimension of the expansion space. |
Source code in tinybig/expansion/basic_expansion.py
forward(x, device='cpu', *args, **kwargs)
The forward method of the data expansion function.
It performs the identity data expansion of the input data and returns the expansion result according to the following equation: $$ \kappa(\mathbf{x}) = \mathbf{x} \in R^D, $$ with optional pre- and post-processing functions.
Examples:
>>> import torch
>>> from tinybig.expansion import identity_expansion
>>> expansion = identity_expansion(name='identity_expansion')
>>> x = torch.Tensor([[0.5, 0.5]])
>>> kappa_x = expansion(x)
>>> kappa_x
tensor([[0.5000, 0.5000]])
>>> import torch.nn.functional as F
>>> expansion_with_preprocessing = identity_expansion(name='identity_expansion_with_preprocessing', preprocess_functions=F.relu)
>>> kappa_x = expansion_with_preprocessing(x)
>>> kappa_x
tensor([[0.5000, 0.5000]])
>>> expansion_with_postprocessing = identity_expansion(name='identity_expansion_with_postprocessing', postprocess_functions=F.sigmoid)
>>> kappa_x = expansion_with_postprocessing(x)
>>> kappa_x
tensor([[0.6225, 0.6225]])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input data vector. |
required |
device
|
The device to perform the data expansion. |
'cpu'
|
|
args
|
The other parameters. |
()
|
|
kwargs
|
The other parameters. |
{}
|
Returns:
Type | Description |
---|---|
Tensor
|
The expanded data vector of the input. |