harr_wavelet_expansion
Bases: discrete_wavelet_expansion
Haar Wavelet Expansion.
Applies the Haar wavelet function for feature expansion.
Notes
Formally, given the input variable \(\mathbf{x} \in R^{m}\), to approximate the underlying mapping \(f: R^m \to R^n\) with wavelet analysis, we can define the approximated output as
\[ \begin{equation} f(\mathbf{x}) \approx \sum_{s, t} \left \langle f(\mathbf{x}), \phi_{s, t} (\mathbf{x} | a, b) \right \rangle \cdot \phi_{s, t} (\mathbf{x} | a, b), \end{equation} \]
where \(\phi_{s, t} (\cdot | a, b)\) denotes the child wavelet defined by hyper-parameters \(a > 1\) and \(b > 0\):
\[ \begin{equation} \phi_{s, t}(x | a, b) = \frac{1}{\sqrt{a^s}} \phi \left( \frac{x - t \cdot b \cdot a^s}{a^s} \right). \end{equation} \]
Based on the wavelet mapping \(\phi_{s, t} (\cdot | a, b)\), we can introduce the \(1_{st}\)-order and \(2_{nd}\)-order wavelet data expansion functions as follows:
\[ \begin{equation} \kappa(\mathbf{x} | d=1) = \left[ \phi_{0, 0}(\mathbf{x}), \phi_{0, 1}(\mathbf{x}), \cdots, \phi_{s, t}(\mathbf{x}) \right] \in R^{D_1}. \end{equation} \]
and
\[ \begin{equation} \kappa(\mathbf{x} | d=2) = \kappa(\mathbf{x} | d=1) \otimes \kappa(\mathbf{x} | d=1) \in R^{D_2}. \end{equation} \]
The output dimensions of the order-1 and order-2 wavelet expansions are \(D_1 = s \cdot t \cdot m\) and \(D_2 = (s \cdot t \cdot m)^2\), respectively.
Specifically, the functions \(\left\{ \phi_{s, t}\right\}_{ s, t \in Z}\) defines the orthonormal basis of the space and the mapping \(\phi(\cdot)\) used in the child wavelet may have different representations.
For Harr wavelet, it can be represented as follows:
Harr Wavelet:
\[ \begin{equation} \begin{aligned} &\phi(\tau) = \begin{cases} 1, & 0 \le \tau < \frac{1}{2},\\ -1, & \frac{1}{2} \le \tau < 1,\\ 0, & \text{ otherwise}. \end{cases} \end{aligned} \end{equation} \]
Attributes:
Name | Type | Description |
---|---|---|
wavelet |
callable
|
Haar wavelet function used during the transformation. |
Methods:
Name | Description |
---|---|
Inherits all methods from `discrete_wavelet_expansion`. |
|
Source code in tinybig/expansion/wavelet_expansion.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
|
__init__(name='harr_wavelet_expansion', a=1.0, b=1.0, *args, **kwargs)
Initializes the Haar wavelet expansion.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the transformation. Defaults to 'harr_wavelet_expansion'. |
'harr_wavelet_expansion'
|
a
|
float
|
The scaling factor for the wavelet. Defaults to 1.0. |
1.0
|
b
|
float
|
The translation factor for the wavelet. Defaults to 1.0. |
1.0
|
*args
|
tuple
|
Additional positional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|