fourier_expansion
Bases: transformation
The signal_processing data expansion function.
It performs the signal_processing expansion of the input vector, and returns the expansion result. The class inherits from the base expansion class (i.e., the transformation class in the module directory).
...
Notes
For input vector \(\mathbf{x} \in R^m\), based on the parameters \(P\) and \(N\), its signal_processing expansion will be $$ \begin{equation} \kappa (\mathbf{x} | P, N) = \left[ \cos (2\pi \frac{1}{P} \mathbf{x} ), \sin(2\pi \frac{1}{P} \mathbf{x} ), \cdots, \cos(2\pi \frac{N}{P} \mathbf{x} ), \sin(2\pi \frac{N}{P} \mathbf{x} ) \right] \in {R}^D, \end{equation} $$ where the output dimension \(D = 2 m N\).
By default, the input and output can also be processed with the optional pre- or post-processing functions in the signal_processing expansion function.
Attributes:
Name | Type | Description |
---|---|---|
name |
str, default = 'fourier_expansion'
|
Name of the expansion function. |
P |
int, default = 10
|
The period parameter of the expansion. |
N |
int, default = 5
|
The harmonic number of the expansion. |
Methods:
Name | Description |
---|---|
__init__ |
It performs the initialization of the expansion function. |
calculate_D |
It calculates the expansion space dimension D based on the input dimension parameter m. |
forward |
It implements the abstract forward method declared in the base expansion class. |
Source code in tinybig/expansion/polynomial_expansion.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
__init__(name='fourier_expansion', P=10, N=5, *args, **kwargs)
The initialization method of signal_processing expansion function.
It initializes a signal_processing expansion object based on the input function name. This method will also call the initialization method of the base class as well.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
The name of the signal_processing expansion function. |
'fourier_expansion'
|
|
P
|
The period parameter of the expansion. |
10
|
|
N
|
The harmonic number of the expansion. |
5
|
Returns:
Type | Description |
---|---|
transformation
|
The signal_processing expansion function. |
Source code in tinybig/expansion/polynomial_expansion.py
calculate_D(m)
The expansion dimension calculation method.
It calculates the intermediate expansion space dimension based on the input dimension parameter m. For the signal_processing expansion function, the expansion space dimension is determined by both m and N, which can be represented as:
\[ D = 2 m N. \]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
m
|
int
|
The dimension of the input space. |
required |
Returns:
Type | Description |
---|---|
int
|
The dimension of the expansion space. |
Source code in tinybig/expansion/polynomial_expansion.py
forward(x, device='cpu', *args, **kwargs)
The forward method of the data expansion function.
It performs the signal_processing data expansion of the input data and returns the expansion result according to the following equation: $$ \begin{equation} \kappa (\mathbf{x} | P, N) = \left[ \cos (2\pi \frac{1}{P} \mathbf{x} ), \sin(2\pi \frac{1}{P} \mathbf{x} ), \cdots, \cos(2\pi \frac{N}{P} \mathbf{x} ), \sin(2\pi \frac{N}{P} \mathbf{x} ) \right] \in {R}^D, \end{equation} $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input data vector. |
required |
device
|
The device to perform the data expansion. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The expanded data vector of the input. |