text_dataloader
Bases: dataloader
The base text dataloader class.
This class provides methods for handling text data, including tokenization, embedding generation, and data loading.
Attributes:
Name | Type | Description |
---|---|---|
name |
str, default = 'text_dataloader'
|
The name of the text dataloader. |
train_batch_size |
int
|
The batch size for training data. |
test_batch_size |
int
|
The batch size for testing data. |
max_seq_len |
int, default = 256
|
The maximum sequence length for text data. |
min_freq |
int, default = 10
|
The minimum frequency for including tokens in the vocabulary. |
Methods:
Name | Description |
---|---|
__init__ |
Initializes the base text dataloader. |
load_datapipe |
Abstract method to load data pipelines for training and testing data. |
get_class_number |
Abstract method to retrieve the number of classes in the dataset. |
get_train_number |
Abstract method to retrieve the number of training examples. |
get_test_number |
Abstract method to retrieve the number of testing examples. |
get_idx_to_label |
Abstract method to retrieve the mapping from indices to labels. |
load_transform |
Loads and returns the text transformation pipeline. |
get_embedding_dim |
Retrieves the embedding dimension for the text encoder. |
load_encoder |
Loads a pre-trained text encoder model. |
load_tfidf_vectorizer |
Loads and returns a TF-IDF vectorizer. |
load_text |
Loads raw text data. |
load_tfidf |
Loads TF-IDF representations of the data. |
load_token |
Loads tokenized representations of the data. |
load_embedding |
Loads embeddings generated from the text data. |
load |
Loads data based on the specified type (e.g., TF-IDF, tokens, embeddings). |
load_xlmr |
Loads data using the XLM-R model for tokenization and embeddings. |
load_glove |
Loads data using GloVe embeddings. |
Source code in tinybig/data/text_dataloader_torchtext.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
|
__init__(train_batch_size, test_batch_size, name='text_dataloader', max_seq_len=256, min_freq=10)
Initializes the text dataloader with configuration options for sequence length and token frequency.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_batch_size
|
int
|
The batch size for training data. |
required |
test_batch_size
|
int
|
The batch size for testing data. |
required |
name
|
str
|
The name of the dataloader. |
= 'text_dataloader'
|
max_seq_len
|
int
|
The maximum sequence length for text data. |
= 256
|
min_freq
|
int
|
The minimum frequency for tokens to be included in the vocabulary. |
= 10
|
Source code in tinybig/data/text_dataloader_torchtext.py
get_class_number(*args, **kwargs)
abstractmethod
Abstract method to retrieve the number of classes in the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
int
|
The number of classes. |
Notes
This method must be implemented in subclasses.
Source code in tinybig/data/text_dataloader_torchtext.py
get_embedding_dim(*args, **kwargs)
staticmethod
Retrieves the embedding dimension for the text encoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
int
|
The embedding dimension (768). |
Source code in tinybig/data/text_dataloader_torchtext.py
get_idx_to_label(*args, **kwargs)
abstractmethod
Abstract method to retrieve the mapping from indices to labels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary mapping indices to labels. |
Notes
This method must be implemented in subclasses.
Source code in tinybig/data/text_dataloader_torchtext.py
get_test_number(*args, **kwargs)
abstractmethod
Abstract method to retrieve the number of testing samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
int
|
The number of testing samples. |
Notes
This method must be implemented in subclasses.
Source code in tinybig/data/text_dataloader_torchtext.py
get_train_number(*args, **kwargs)
abstractmethod
Abstract method to retrieve the number of training samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
int
|
The number of training samples. |
Notes
This method must be implemented in subclasses.
Source code in tinybig/data/text_dataloader_torchtext.py
load(cache_dir='./data/', load_type='tfidf', max_seq_len=None, xy_reversed=False, max_vocab_size=25000, min_freq=10, *args, **kwargs)
General method to load text data in various formats.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cache_dir
|
str
|
The directory where the data is cached. |
= './data/'
|
load_type
|
str
|
The format of the data to load. Options include: - 'tfidf': Load TF-IDF representations. - 'text': Load raw text. - 'token': Load tokenized text. - 'embedding': Load pre-trained embeddings. - 'xlmr_embedding': Load XLM-R embeddings. |
= 'tfidf'
|
max_seq_len
|
int
|
The maximum sequence length for the text data. |
None
|
xy_reversed
|
bool
|
Whether to reverse the order of features (X) and labels (Y). |
= False
|
max_vocab_size
|
int
|
The maximum size of the vocabulary. |
= 25000
|
min_freq
|
int
|
The minimum frequency for tokens to be included in the vocabulary. |
= 10
|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing training and testing DataLoaders. |
Source code in tinybig/data/text_dataloader_torchtext.py
load_datapipe(cache_dir='./data/', *args, **kwargs)
abstractmethod
Abstract method to load the data pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cache_dir
|
str
|
The directory where the data is cached. |
= './data/'
|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Notes
This method must be implemented in subclasses.
Source code in tinybig/data/text_dataloader_torchtext.py
load_embedding(*args, **kwargs)
Loads pre-trained embeddings for text data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing training and testing DataLoaders. |
Source code in tinybig/data/text_dataloader_torchtext.py
load_encoder(cache_dir='./data/', *args, **kwargs)
staticmethod
Loads the pre-trained XLM-R encoder for text embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cache_dir
|
str
|
The directory where the encoder is cached. |
= './data/'
|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
Module
|
The XLM-R encoder model. |
Source code in tinybig/data/text_dataloader_torchtext.py
load_glove(cache_dir='./data/', max_vocab_size=25000, min_freq=10, max_seq_len=150, xy_reversed=False, *args, **kwargs)
Loads text data using GloVe embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cache_dir
|
str
|
The directory where the data is cached. |
= './data/'
|
max_vocab_size
|
int
|
The maximum size of the vocabulary. |
= 25000
|
min_freq
|
int
|
The minimum frequency for tokens to be included in the vocabulary. |
= 10
|
max_seq_len
|
int
|
The maximum sequence length for the text data. |
= 150
|
xy_reversed
|
bool
|
Whether to reverse the order of features (X) and labels (Y). |
= False
|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing training and testing DataLoaders. |
Source code in tinybig/data/text_dataloader_torchtext.py
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
|
load_text(*args, **kwargs)
Loads raw text data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing training and testing DataLoaders. |
Source code in tinybig/data/text_dataloader_torchtext.py
load_tfidf(*args, **kwargs)
Loads TF-IDF representations of text data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing training and testing DataLoaders. |
Source code in tinybig/data/text_dataloader_torchtext.py
load_tfidf_vectorizer(sublinear_tf=True, max_df=0.5, min_df=5, stop_words='english', *args, **kwargs)
Loads a TF-IDF vectorizer for text data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sublinear_tf
|
bool
|
Whether to apply sublinear term frequency scaling. |
= True
|
max_df
|
float
|
The maximum document frequency for inclusion in the vocabulary. |
= 0.5
|
min_df
|
int
|
The minimum document frequency for inclusion in the vocabulary. |
= 5
|
stop_words
|
str
|
The language of stopwords to exclude. |
= "english"
|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
TfidfVectorizer
|
A TF-IDF vectorizer instance. |
Source code in tinybig/data/text_dataloader_torchtext.py
load_token(*args, **kwargs)
Loads tokenized text data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing training and testing DataLoaders. |
Source code in tinybig/data/text_dataloader_torchtext.py
load_transform(max_seq_len, padding_idx=1, bos_idx=0, eos_idx=2, *args, **kwargs)
staticmethod
Loads the text transformation pipeline for preprocessing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_seq_len
|
int
|
The maximum sequence length for the transformation. |
required |
padding_idx
|
int
|
The index used for padding tokens. |
= 1
|
bos_idx
|
int
|
The index used for beginning-of-sequence tokens. |
= 0
|
eos_idx
|
int
|
The index used for end-of-sequence tokens. |
= 2
|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
Sequential
|
A sequential transformation pipeline for text preprocessing. |
Source code in tinybig/data/text_dataloader_torchtext.py
load_xlmr(cache_dir='./data/', load_type='tfidf', max_seq_len=None, xy_reversed=False, *args, **kwargs)
Loads text data using XLM-R (Cross-lingual Model Representations) pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cache_dir
|
str
|
The directory where the data is cached. |
= './data/'
|
load_type
|
str
|
The format of the data to load. Options include: - 'text': Load raw text. - 'tfidf': Load TF-IDF representations. - 'token': Load tokenized text. - 'xlmr_embedding': Load XLM-R embeddings. |
= 'tfidf'
|
max_seq_len
|
int
|
The maximum sequence length for the text data. |
None
|
xy_reversed
|
bool
|
Whether to reverse the order of features (X) and labels (Y). |
= False
|
*args
|
tuple
|
Additional arguments. |
()
|
**kwargs
|
dict
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing training and testing DataLoaders. |
Source code in tinybig/data/text_dataloader_torchtext.py
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
|