incremental_PCA_based_compression
Bases: dimension_reduction_compression
The incremental PCA dimension reduction based data compression function.
A dimension reduction and compression class based on incremental PCA. This class uses incremental Principal Component Analysis (PCA) to reduce the dimensionality of input features. It calls the incremental_PCA method from the tinybig.koala.machine_learning.dimension_reduction.incremental_PCA module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
D
|
int
|
Number of dimensions to retain after compression. |
required |
name
|
str
|
Name of the transformation. Defaults to 'incremental_PCA_based_compression'. |
'incremental_PCA_based_compression'
|
*args
|
tuple
|
Additional positional arguments for the parent |
()
|
**kwargs
|
dict
|
Additional keyword arguments for the parent |
{}
|
Methods:
Name | Description |
---|---|
__init__ |
Initializes the class with the incremental PCA method. |
Source code in tinybig/compression/dimension_reduction_compression.py
__init__(D, name='incremental_PCA_based_compression', *args, **kwargs)
The incremental PCA dimension reduction based data compression function.
It initializes the class with the incremental PCA method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
D
|
int
|
Number of dimensions to retain after compression. |
required |
name
|
str
|
Name of the transformation. Defaults to 'incremental_PCA_based_compression'. |
'incremental_PCA_based_compression'
|
*args
|
tuple
|
Additional positional arguments for the parent |
()
|
**kwargs
|
dict
|
Additional keyword arguments for the parent |
{}
|