combinatorial_probabilistic_compression
              Bases: combinatorial_compression
A combinatorial probabilistic compression class for dimensionality reduction.
This class extends combinatorial_compression by enabling probabilistic sampling
of feature combinations based on a defined metric or distribution function.
Notes
Based on the combinatorial compression function, a corresponding multivariate distribution can also be applied to compute the log-likelihood of the tuples: $$ \begin{equation} \kappa(\mathbf{x}) = \log P\left( {\kappa(\mathbf{x} | k) \choose d} | \boldsymbol{\theta} \right) \in {R}^d, \end{equation} $$ which reduce the output dimension to be \(\sum_{i=1}^d k \times 1\).
Methods:
| Name | Description | 
|---|---|
__init__ | 
              
                 Initializes the combinatorial probabilistic compression instance.  | 
            
Source code in tinybig/compression/combinatorial_compression.py
                
            __init__(name='combinatorial_probabilistic_compression', d=1, k=1, metric=None, with_replacement=False, require_normalization=True, *args, **kwargs)
    Initializes the combinatorial probabilistic compression instance.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                name
             | 
            
                  str
             | 
            
               Name of the transformation. Defaults to 'combinatorial_probabilistic_compression'.  | 
            
                  'combinatorial_probabilistic_compression'
             | 
          
                d
             | 
            
                  int
             | 
            
               Maximum order of combinations to generate. Defaults to 1.  | 
            
                  1
             | 
          
                k
             | 
            
                  int
             | 
            
               Number of combinations to retain per order. Defaults to 1.  | 
            
                  1
             | 
          
                metric
             | 
            
                  Callable
             | 
            
               Metric function to apply to the input tensor before sampling. Defaults to None.  | 
            
                  None
             | 
          
                with_replacement
             | 
            
                  bool
             | 
            
               If True, allows combinations to be generated with replacement. Defaults to False.  | 
            
                  False
             | 
          
                require_normalization
             | 
            
                  bool
             | 
            
               If True, normalizes the input tensor before sampling. Defaults to True.  | 
            
                  True
             | 
          
                *args
             | 
            
                  tuple
             | 
            
               Additional positional arguments for the parent   | 
            
                  ()
             | 
          
                **kwargs
             | 
            
                  dict
             | 
            
               Additional keyword arguments for the parent   | 
            
                  {}
             |