combinatorial_compression
Bases: transformation
A combinatorial compression class for dimensionality reduction.
This class generates combinations of features from the input tensor up to a specified order (d
)
and applies sampling to reduce the dimensionality.
Notes
Formally, given a data instance vector \(\mathbf{x} \in {R}^m\), we can represent the combination of \(k\) selected attributes from \(\mathbf{x}\) as \(\mathbf{x} \choose k\), for \(k \in \{1, 2, \cdots, m\}\). It will introduce the combinatorial expansion of the input data instance vector \(\mathbf{x}\) as follows: $$ \begin{equation} \kappa(\mathbf{x} | k) = \left[ {\mathbf{x} \choose 1}, {\mathbf{x} \choose 2}, \cdots, {\mathbf{x} \choose k} \right]. \end{equation} $$
Based on this expansion, we can define the combinatorial probabilistic compression function by sampling \(d\) tuples from \(\kappa(\mathbf{x} | 1:k)\), treating the tuples as independent ``items'', whose output dimension will be \(\sum_{i=1}^d k \times i\).
Furthermore, a corresponding multivariate distribution can also be applied to compute the log-likelihood of the tuples: $$ \begin{equation} \kappa(\mathbf{x}) = \log P\left( {\kappa(\mathbf{x} | k) \choose d} | \boldsymbol{\theta} \right) \in {R}^d, \end{equation} $$ which reduce the output dimension to be \(\sum_{i=1}^d k \times 1\).
Attributes:
Name | Type | Description |
---|---|---|
k |
int
|
Number of combinations to retain per order. |
d |
int
|
Maximum order of combinations to generate. |
metric |
(Callable, optional)
|
Metric function to apply to the input tensor before sampling. Defaults to None. |
simply_sampling |
bool
|
If True, performs simple sampling without further processing. Defaults to True. |
with_replacement |
bool
|
If True, allows combinations to be generated with replacement. Defaults to False. |
require_normalization |
bool
|
If True, normalizes the input tensor before sampling. Defaults to True. |
log_prob |
bool
|
If True, returns the logarithm of probabilities for the compressed features. Defaults to False. |
distribution_functions |
dict
|
Dictionary of distribution functions for each combination order. |
Methods:
Name | Description |
---|---|
__init__ |
Initializes the combinatorial compression instance. |
calculate_D |
Computes the total number of features to retain after compression. |
calculate_weights |
Computes sampling weights for the input tensor based on the probability distribution. |
random_combinations |
Generates random combinations of features and samples the resulting combinations. |
forward |
Applies combinatorial compression to the input tensor. |
Source code in tinybig/compression/combinatorial_compression.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
__init__(name='combinatorial_compression', d=1, k=1, simply_sampling=True, metric=None, with_replacement=False, require_normalization=True, log_prob=False, *args, **kwargs)
Initializes the combinatorial compression instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the transformation. Defaults to 'combinatorial_compression'. |
'combinatorial_compression'
|
d
|
int
|
Maximum order of combinations to generate. Defaults to 1. |
1
|
k
|
int
|
Number of combinations to retain per order. Defaults to 1. |
1
|
simply_sampling
|
bool
|
If True, performs simple sampling without further processing. Defaults to True. |
True
|
metric
|
Callable
|
Metric function to apply to the input tensor before sampling. Defaults to None. |
None
|
with_replacement
|
bool
|
If True, allows combinations to be generated with replacement. Defaults to False. |
False
|
require_normalization
|
bool
|
If True, normalizes the input tensor before sampling. Defaults to True. |
True
|
log_prob
|
bool
|
If True, returns the logarithm of probabilities for the compressed features. Defaults to False. |
False
|
*args
|
tuple
|
Additional positional arguments for the parent |
()
|
**kwargs
|
dict
|
Additional keyword arguments for the parent |
{}
|
Source code in tinybig/compression/combinatorial_compression.py
calculate_D(m)
The compression dimension calculation method.
It computes the total number of features to retain after compression.
For each combination order, calculates the number of combinations to retain based on k
and d
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
m
|
int
|
Total number of features in the input tensor. |
required |
Returns:
Type | Description |
---|---|
int
|
Total number of features to retain after compression. |
Raises:
Type | Description |
---|---|
AssertionError
|
If |
Source code in tinybig/compression/combinatorial_compression.py
calculate_weights(x, r)
Computes sampling weights for the input tensor based on the probability distribution.
This method applies the specified distribution function for the combination order r
to compute weights for sampling.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor of shape |
required |
r
|
int
|
Combination order for which the weights are computed. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Sampling weights of shape |
Source code in tinybig/compression/combinatorial_compression.py
forward(x, device='cpu', *args, **kwargs)
Applies combinatorial compression to the input tensor.
Combines features up to the specified order (d
) and samples combinations to reduce dimensionality.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor of shape |
required |
device
|
str
|
Device for computation (e.g., 'cpu' or 'cuda'). Defaults to 'cpu'. |
'cpu'
|
*args
|
tuple
|
Additional positional arguments for pre- and post-processing. |
()
|
**kwargs
|
dict
|
Additional keyword arguments for pre- and post-processing. |
{}
|
Returns:
Type | Description |
---|---|
Tensor
|
Compressed tensor of shape |
Raises:
Type | Description |
---|---|
AssertionError
|
If the output tensor shape does not match the expected dimensions. |
Source code in tinybig/compression/combinatorial_compression.py
random_combinations(x, r, *args, **kwargs)
Generates random combinations of features and samples the resulting combinations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor of shape |
required |
r
|
int
|
Order of combinations to generate. |
required |
*args
|
tuple
|
Additional positional arguments for the method. |
()
|
**kwargs
|
dict
|
Additional keyword arguments for the method. |
{}
|
Returns:
Type | Description |
---|---|
Tensor
|
Compressed tensor containing sampled combinations of shape |